1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
| import pandas as pd from pandas import Series from pandas import DataFrame
print(pd.__version__)
print(Series([1,2,3]))
series = Series([1, 2, 3, 4], name='A')
print(series)
custom_index = [1, 2, 3, 4] series_with_index = Series([1, 2, 3, 4], index=custom_index, name='A')
print(series_with_index)
s = Series({'a': 1, 'b': 2, 'c': 3, 'd': 4}) print(s)
print(s['a'])
print(s[1:4])
print("索引:", s.index) print("数据:", s.values) print("数据类型:", s.dtype) print("前两行数据:", s.head(2))
print("s.loc['d']:", s.loc['d'])
print("s.iloc[1]:", s.iloc[1])
print("s.at['d']:", s.at['d'])
print("s.iat[1]):", s.iat[1])
print("s[s > 1]", s[s > 1])
for index, value in s.items(): print(f"Index: {index}, Value: {value}")
del s['a']
s_dropped = s.drop(['b']) print('s_dropped') print(s_dropped)
s.drop_duplicates()
s.unique()
print('s.nunique()', s.nunique())
print(s.sum()) print(s.mean()) print(s.max()) print(s.min()) print(s.std())
print('s.describe()') print(s.describe())
max_index = s.idxmax() min_index = s.idxmin()
print(s.dtype) print(s.shape) print(s.size) print(s.head()) print(s.tail()) print(s.sum()) print(s.mean()) print(s.std()) print(s.min()) print(s.max())
print(Series([11, 22],['china', 'test'])+Series([33,55],['test','china']))
print("缺失值判断:", s.isnull())
print("s.isna():", s.isna())
print("s.isin([3,6,7]):", s.isin([3,6,7]))
print("s.quantile(0.5):", s.quantile(0.5))
print("s.value_counts():", s.value_counts())
print("对 Series 中的元素进行排序(按值排序):", s.sort_values())
print("对 Series 的索引进行排序:", s.sort_index())
s_doubled = s.map(lambda x: x * 2) print("元素加倍后:", s_doubled)
cumsum_s = s.cumsum() print("累计求和:", cumsum_s)
|